Олимпиадные задачи из источника «1952 год» для 11 класса - сложность 3-5 с решениями
Докажите, что ни при каком целом <i>A</i> многочлен 3<i>x</i><sup>2<i>n</i></sup> + <i>Ax</i><sup><i>n</i></sup> + 2 не делится на многочлен 2<i>x</i><sup>2<i>m</i></sup> + <i>Ax</i><sup><i>m</i></sup> + 3.
Докажите, что сумма<div align="CENTER"> cos 32<i>x</i> + <i>a</i><sub>31</sub>cos 31<i>x</i> + <i>a</i><sub>30</sub>cos 30<i>x</i> + ... + <i>a</i><sub>1</sub>cos <i>x</i> </div>принимает как положительные, так и отрицательные значения.
В равнобедренном треугольнике <i>ABC</i> ∠<i>ABC</i> = 20°. На равных сторонах <i>CB</i> и <i>AB</i> взяты соответственно точки <i>P</i> и <i>Q</i> так, что ∠<i>PAC</i> = 50° и ∠<i>QCA</i> = 60°.
Докажите, что ∠<i>PQC</i> = 30°.
Поместить в полый куб с ребром<i>a</i>три цилиндра диаметра${\frac{a}{2}}$и высоты<i>a</i>так, чтобы они не могли менять своего положения внутри куба.
$\Delta$<i>ABC</i>разбит прямой<i>BD</i>на два треугольника. Докажите, что сумма радиусов окружностей, вписанных в$\Delta$<i>ABD</i>и$\Delta$<i>DBC</i>, больше радиуса окружности, вписанной в$\Delta$<i>ABC</i>.