Олимпиадные задачи из источника «8 класс, 2 тур» - сложность 2 с решениями
8 класс, 2 тур
НазадСколько осей симметрии может иметь семиугольник?
Из клетчатой бумаги вырезан квадрат 17×17. В клетках квадрата произвольным образом написаны числа 1, 2, 3, ..., 70 по одному и только одному числу в каждой клетке. Доказать, что существуют такие четыре различные клетки с центрами в точках <i>A, B, C, D</i>, что <i>AB = CD, AD = BC</i> и сумма чисел, стоящих в клетках с центрами в <i>A</i> и <i>C</i>, равна сумме чисел в клетках с центрами <i>B</i> и <i>D</i>.