Олимпиадные задачи из источника «1955 год» для 6-8 класса - сложность 2 с решениями

Дано уравнение  <i>x<sup>n</sup> – a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> – <i>a</i><sub>2</sub><i>x</i><sup><i>n</i>–2</sup> – ... – <i>a</i><sub><i>n</i>–1</sub><i>x – a<sub>n</sub></i> = 0,  где  <i>a</i><sub>1</sub> ≥ 0,  <i>a</i><sub>2</sub> ≥ 0,  <i>a<sub>n</sub></i> ≥ 0.

Доказать, что это уравнение не может иметь двух положительных корней.

Дан$\Delta$<i>ABC</i>. Центры вневписанных окружностей<i>O</i><sub>1</sub>,<i>O</i><sub>2</sub>и<i>O</i><sub>3</sub>соединены прямыми. Доказать, что$\Delta$<i>O</i><sub>1</sub><i>O</i><sub>2</sub><i>O</i><sub>3</sub>— остроугольный.

Решить в целых числах уравнение  <i>x</i>³ – 2<i>y</i>³ – 4<i>z</i>³ = 0.

2<sup><i>n</i></sup> = 10<i>a + b</i>.  Доказать, что если  <i>n</i> > 3,  то <i>ab</i> делится на 6.  (<i>n, a</i> и <i>b</i> – целые числа,  <i>b</i> < 10.)

Числа 1, 2, ..., 49 расположены в квадратную таблицу <div align="center"><img src="/storage/problem-media/78024/problem_78024_img_2.gif"></div>Произвольное число из таблицы выписывается, после чего из таблицы вычёркивается строка и столбец, содержащие это число. То же самое проделывается с оставшейся таблицей и т.д., всего 7 раз. Найти сумму выписанных чисел.

Существует ли такое натуральное <i>n</i>, что  <i>n</i>² + <i>n</i> + 1  делится на 1955?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка