Олимпиадные задачи из источника «7 класс, 2 тур»

Дано <i>n</i> чисел, <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i>, при этом  <i>x<sub>k</sub></i> = ±1.  Доказать, что если  <i>x</i><sub>1</sub><i>x</i><sub>2</sub> + <i>x</i><sub>2</sub><i>x</i><sub>3</sub> + ... + <i>x<sub>n</sub>x</i><sub>1</sub> = 0,  то <i>n</i> делится на 4.

Доказать, что в любом шестизначном числе можно переставить цифры так, чтобы сумма первых трёх отличалась от суммы вторых трёх меньше, чем на 10.

На какое целое число надо умножить999 999 999, чтобы получить число, состоящее из одних единиц?

Дан треугольник <i>ABC</i>. Найти такую точку, что если её симметрично отразить от любой стороны треугольника, то она попадает на описанную окружность.

Имеется два набора чисел  <i>a</i><sub>1</sub> > <i>a</i><sub>2</sub> > ... > <i>a<sub>n</sub></i>  и  <i>b</i><sub>1</sub> > <i>b</i><sub>2</sub> > ... > <i>b<sub>n</sub></i>.  Доказать, что  <i>a</i><sub>1</sub><i>b</i><sub>1</sub> + <i>a</i><sub>2</sub><i>b</i><sub>2</sub> + ... + <i>a<sub>n</sub>b<sub>n</sub> > a</i><sub>1</sub><i>b<sub>n</sub> + a</i><sub>2</sub><i>b</i><sub><i>n</i>–1</sub> + ... + <i>a&...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка