Олимпиадные задачи из источника «1963 год» для 1-9 класса - сложность 4 с решениями

<i>A'</i>,<i>B'</i>,<i>C'</i>,<i>D'</i>,<i>E'</i>— середины сторон выпуклого пятиугольника<i>ABCDE</i>. Доказать, что площади пятиугольников<i>ABCDE</i>и<i>A'B'C'D'E'</i>связаны соотношением:<div align="CENTER"> <i>S</i><sub>A'B'C'D'E'</sub>$\displaystyle \ge$$\displaystyle {\textstyle\frac{1}{2}}$<i>S</i><sub>ABCDE</sub>. </div>

Дан произвольный треугольник<i>ABC</i>и точка<i>X</i>вне его.<i>AM</i>,<i>BN</i>,<i>CQ</i>— медианы треугольника<i>ABC</i>. Доказать, что площадь одного из треугольников<i>XAM</i>,<i>XBN</i>,<i>XCQ</i>равна сумме площадей двух других.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка