Олимпиадные задачи из источника «1967 год» для 8-10 класса - сложность 2 с решениями

Можно ли расставить на окружности числа1, 2...12 так, чтобы разность между двумя рядом стоящими числами была 3, 4 или 5?

Семь школьников решили за воскресенье обойти семь кинотеатров. Во всех них сеансы начинаются в 9.00, 10.40, 12.20, 14.00, 15.40, 17.20, 19.00 и 20.40 (8 сеансов). На каждый сеанс шестеро шли вместе, а кто-нибудь один (не обязательно один и тот же) шел в другой кинотеатр. К вечеру каждый побывал в каждом кинотеатре. Докажите, что в каждом кинотеатре был сеанс, на котором не был ни один из этих школьников.

На каждой стороне прямоугольного треугольника построено по квадрату (пифагоровы штаны), и вся фигура вписана в круг. Для каких прямоугольных треугольников это можно сделать?

Число <i>y</i> получается из натурального числа <i>x</i> некоторой перестановкой его цифр. Докажите, что каково бы ни было <i>x</i>,  <img align="middle" src="/storage/problem-media/78617/problem_78617_img_2.gif">

Над квадратным катком нужно повесить четыре лампы так, чтобы они его полностью освещали. На какой наименьшей высоте нужно повесить лампы, если каждая лампа освещает круг радиуса, равного высоте, на которой она висит?

В треугольнике<i>ABC</i>проведены высоты<i>AE</i>,<i>BM</i>и<i>CP</i>. Известно, что<i>EM</i>параллельна<i>AB</i>и<i>EP</i>параллельна<i>AC</i>. Докажите, что<i>MP</i>параллельна<i>BC</i>.

Чему равна максимальная разность между соседними числами из числа тех, сумма цифр которых делится на 7?

Можно ли разрезать квадратный пирог на 9 равновеликих частей таким способом: выбрать внутри квадрата две точки и соединить каждую из них прямолинейными разрезами со всеми четырьмя вершинами квадрата? Если можно, то какие две точки нужно выбрать?

Имеется лабиринт, состоящий из<i>n</i>окружностей, касающихся прямой<i>AB</i>в точке<i>M</i>. Все окружности расположены по одну сторону от прямой, а их длины составляют геометрическую прогрессию со знаменателем 2. Два человека в разное время начали ходить по этому лабиринту. Их скорости одинаковы, а направления движения различны. Каждый из них проходит все окружности по порядку, и, пройдя наибольшую, снова идет в меньшую. Доказать, что они встретятся.

Дан треугольник<i>ABC</i>. Найдите на прямой<i>AB</i>точку <i>M</i>, для которой сумма радиусов описанных окружностей треугольников<i>ACM</i>и<i>BCM</i>была бы наименьшей.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка