Олимпиадные задачи из источника «1971 год» для 11 класса - сложность 4 с решениями
Доказать, что сумма цифр числа<i>N</i>превосходит сумму цифр числа5<sup>5 . </sup><i>N</i>не более чем в 5 раз.
В пространстве даны точка<i>O</i>и<i>n</i>попарно непараллельных прямых. Точка<i>O</i>ортогонально проектируется на все данные прямые. Каждая из получившихся точек снова проектируется на все данные прямые и т.д. Существует ли шар, содержащий все точки, которые могут быть получены таким образом?
а) Доказать, что сумма цифр числа <i>K</i> не более чем в 8 раз превосходит сумму цифр числа 8<i>K</i>.
б) Для каких натуральных <i>k</i> существует такое положительное число <i>c<sub>k</sub></i>, что <img align="absmiddle" src="/storage/problem-media/78791/problem_78791_img_2.gif"> ≥ <i>c<sub>k</sub></i> для всех натуральных <i>N</i>? Найдите наибольшее подходящее значение <i>c<sub>k</sub></i>.