Олимпиадные задачи из источника «1971 год» для 3-9 класса - сложность 3 с решениями
Доказать, что можно расставить в вершинах правильного <i>n</i>-угольника действительные числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i>, все отличные от 0, так, чтобы для любого правильного <i>k</i>-угольника, все вершины которого являются вершинами исходного <i>n</i>-угольника, сумма чисел, стоящих в его вершинах, равнялась 0.
Дано 29-значное число <i>X</i> = <span style="text-decoration: overline;"><i>a</i><sub>1</sub>...<i>a</i><sub>29</sub></span> (0 ≤ <i>a<sub>k</sub></i> ≤ 9, <i>a</i><sub>1</sub> ≠ 0). Известно, что для всякого <i>k</i> цифра <i>a<sub>k</sub></i> встречается в записи данного числа <i>a</i><sub>30–<i>k</i></sub> раз (например, если <i>a</i><sub>10</sub> = 7, то цифра <i>a</i><sub>20</sub> встречается семь раз). Найти сумму цифр числа <i>X</i>.
В колбе находится колония из<i>n</i>бактерий. В какой-то момент внутрь колбы попадает вирус. В первую минуту вирус уничтожает одну бактерию, и сразу же после этого и вирус, и оставшиеся бактерии делятся пополам. Во вторую минуту новые два вируса уничтожают две бактерии, а затем и вирусы, и оставшиеся бактерии снова делятся пополам, и т.д. Наступит ли такой момент времени, когда не останется ни одной бактерии?
Лежит кучка в 10 миллионов спичек. Двое играют в следующую игру. Ходят по очереди. За один ход играющий может взять из кучки спички в количестве <i>p<sup>n</sup></i>, где <i>p</i> – простое число, <i>n</i> = 0, 1, 2, 3, ... (например, первый берёт 25 спичек, второй – 8, первый – 1, второй – 5, первый – 49 и т.д.). Выигрывает тот, кто берёт последнюю спичку. Кто выиграет при правильной игре?
<i>n</i>точек расположены в вершинах выпуклого<i>n</i>-угольника. Внутри этого<i>n</i>-угольника отметили<i>k</i>точек. Оказалось, что любые три из<i>n</i>+<i>k</i>точек не лежат на одной прямой и являются вершинами равнобедренного треугольника. Чему может быть равно число<i>k</i>?
Внутри квадрата <!-- MATH $A_{1}A_{2}A_{3}A_{4}$ --> <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub> взята точка <i>P</i>. Из вершины <i>A</i><sub>1</sub> опущен перпендикуляр на <i>A</i><sub>2</sub><i>P</i>, из <i>A</i><sub>2</sub> — перпендикуляр на <i>A</i><sub>3</sub><i>P</i>, из <i>A</i><sub>3</sub> — на <i>A</i><sub>4</sub><i>P</i>, из <i>A</i><sub>4</sub> — на <i>A</i><sub>1</sub><i>P</i>. Докажите...