Олимпиадные задачи из источника «1972 год» для 9 класса - сложность 4 с решениями
На плоскости проведено 3000 прямых, причём никакие две из них не параллельны и никакие три не пересекаются в одной точке. По этим прямым плоскость разрезана на куски. Доказать, что среди кусков найдётся не менее: а) 1000 треугольников, б) 2000 треугольников.
Озеро имеет форму невыпуклого<nobr><i>n</i>-угольника.</nobr>Докажите, что множество точек озера, из которых видны все его берега, либо пусто, либо заполняет внутренность выпуклого<nobr><i>m</i>-угольника,</nobr>где<nobr><i>m</i>≤<i>n</i>.</nobr>