Олимпиадные задачи из источника «1973 год» для 10 класса - сложность 3 с решениями
У трёхгранного угла проведены биссектрисы плоских углов. Доказать, что попарные углы между биссектрисами либо одновременно тупые, либо одновременно прямые, либо одновременно острые.
Дано число <i>A</i> = <img width="16" height="44" align="MIDDLE" border="0" src="/storage/problem-media/79263/problem_79263_img_2.gif"><img width="66" height="41" align="MIDDLE" border="0" src="/storage/problem-media/79263/problem_79263_img_3.gif"><img width="28" height="46" align="MIDDLE" border="0" src="/storage/problem-media/79263/problem_79263_img_4.gif">, где <i>n</i> и <i>m</i> – натуральные числа, не меньшие 2.
Доказать, что существует такое натуральное <i>k</i>, что <i>A</i> = <img width="93" height="58" align="MIDDLE" b...
В центре квадрата находится полицейский, а в одной из его вершин – гангстер. Полицейский может бегать по всему квадрату, а гангстер – только по его сторонам. Известно, что максимальная скорость гангстера равна 2,9 максимальной скорости полицейского. Полицейский хочет оказаться вместе с гангстером на одной стороне квадрата. Всегда ли он сможет этого добиться?
В концах отрезка пишутся две единицы. Посередине между ними пишется их сумма – число 2. Затем посередине между каждыми двумя соседними из написанных чисел снова пишется их сумма и так далее 1973 раза. Сколько раз будет написано число 1973?
Дано число <i>A</i> = <img width="16" height="44" align="MIDDLE" border="0" src="/storage/problem-media/79260/problem_79260_img_2.gif"><img width="77" height="41" align="MIDDLE" border="0" src="/storage/problem-media/79260/problem_79260_img_3.gif"><img width="23" height="51" align="MIDDLE" border="0" src="/storage/problem-media/79260/problem_79260_img_4.gif">, где <i>M</i> – натуральное число большее 2.
Доказать, что найдётся такое натуральное <i>k</i>, что <i>A</i> = <img width="93" height="58" align="MIDDLE" border="0" src=&quo...
На бесконечной шахматной доске проведена замкнутая несамопересекающаяся ломаная, проходящая по сторонам клеток. Внутри ломаной оказалось <i>k</i> чёрных клеток. Какую наибольшую площадь может иметь фигура, ограниченная этой ломаной?
На бумагу поставили кляксу. Для каждой точки кляксы определили наименьшее и наибольшее расстояние до границы кляксы. Среди всех наименьших расстояний выбрали наибольшее, а среди наибольших выбрали наименьшее и сравнили полученные два числа. Какую форму имеет клякса, если эти два числа равны между собой?
Многочлен <i>P</i>(<i>x</i>) с целыми коэффициентами при некоторых целых <i>x</i> принимает значения 1, 2 и 3.
Доказать, что существует не более одного целого <i>x</i>, при котором значение этого многочлена равно 5.
С натуральным числом <i>K</i> производится следующая операция: оно представляется в виде произведения простых сомножителей <i>K</i> = <i>p</i><sub>1</sub><i>p</i><sub>2</sub>...<i>p<sub>n</sub></i>; затем вычисляется сумма <i>p</i><sub>1</sub> + <i>p</i><sub>2</sub> + ... + <i>p<sub>n</sub></i> + 1. С полученным числом производится то же самое, и т.д.
Доказать, что образующаяся последовательность, начиная с некоторого номера, будет периодической.
Грани кубика занумерованы 1, 2, 3, 4, 5, 6, так, что сумма номеров на противоположных гранях кубика равна 7. Дана шахматная доска 50×50 клеток, каждая клетка равна грани кубика. Кубик перекатывается из левого нижнего угла доски в правый верхний. При перекатывании он каждый раз переваливается через свое ребро на соседнюю клетку, при этом разрешается двигаться только вправо или вверх (нельзя двигаться влево или вниз). На каждой из клеток на пути кубика имеется номер грани, которая опиралась на эту клетку. Какое наибольшее значение может принимать сумма всех написанных чисел? Какое наименьшее значение она может принимать?