Олимпиадные задачи из источника «9 класс, 2 тур» - сложность 3-5 с решениями
9 класс, 2 тур
НазадПрямоугольный лист бумаги размером<i>a</i>×<i>b</i>см разрезан на прямоугольные полоски, каждая из которых имеет сторону 1 см. Линии разрезов параллельны сторонам исходного листа. Доказать, что хотя бы одно из чисел<i>a</i>или<i>b</i>целое.
Имеется несколько гирь, масса каждой из которых равна целому числу. Известно, что их можно разбить на <i>k</i> равных по массе групп.
Доказать, что не менее чем <i>k</i> способами можно убрать одну гирю так, чтобы оставшиеся гири нельзя было разбить на <i>k</i> равных по массе групп.
Существует ли такая последовательность натуральных чисел, чтобы любое натуральное число $1$, $2$, $3$, ... можно было представить единственным способом в виде разности двух чисел этой последовательности?