Олимпиадные задачи из источника «1974 год» для 10-11 класса - сложность 1-2 с решениями
Доказать, что в десятичной записи чисел 2<sup><i>n</i></sup> + 1974<sup><i>n</i></sup> и 1974<sup><i>n</i></sup> содержится одинаковое количество цифр.
Дан треугольник<i>ABC</i>,<i>AD</i>и<i>BE</i>— его биссектрисы. Известно, что<i>AC</i>><i>BC</i>. Доказать, что<i>AE</i>><i>DE</i>><i>BD</i>.
На кубе отмечены вершины и центры граней, а также проведены диагонали всех граней. Можно ли по отрезкам этих диагоналей обойти все отмеченные точки, побывав в каждой из них ровно по одному разу?
Из отрезков, имеющих длины<i>a</i>,<i>b</i>и<i>c</i>, можно составить треугольник. Доказать, что из отрезков с длинами${\frac{1}{a+c}}$,${\frac{1}{b+c}}$,${\frac{1}{a+b}}$также можно составить треугольник.
Доказать, что в круг радиуса 1 нельзя поместить без наложений два треугольника, площадь каждого из которых больше 1.
Доказать, что число 100...001, в котором 2<sup>1974</sup> + 2<sup>1000</sup> – 1 нулей, составное.