Олимпиадные задачи из источника «1974 год» для 11 класса - сложность 2-3 с решениями
Шарообразная планета окружена 37-ю точечными астероидами. Доказать, что в любой момент на поверхности планеты найдётся точка, из которой астроном не сможет наблюдать более 17 астероидов. <b>Примечание.</b> Астероид, расположенный на линии горизонта, не виден.
Доказать, что в десятичной записи чисел 2<sup><i>n</i></sup> + 1974<sup><i>n</i></sup> и 1974<sup><i>n</i></sup> содержится одинаковое количество цифр.
На кубе отмечены вершины и центры граней, а также проведены диагонали всех граней. Можно ли по отрезкам этих диагоналей обойти все отмеченные точки, побывав в каждой из них ровно по одному разу?
Из отрезков, имеющих длины<i>a</i>,<i>b</i>и<i>c</i>, можно составить треугольник. Доказать, что из отрезков с длинами${\frac{1}{a+c}}$,${\frac{1}{b+c}}$,${\frac{1}{a+b}}$также можно составить треугольник.