Олимпиадные задачи из источника «8 класс, 2 тур» - сложность 2-5 с решениями
8 класс, 2 тур
НазадИмеются две страны: <i>Обычная</i> и <i>Зазеркалье</i>. У каждого города в <i>Обычной</i> стране есть "двойник" в <i>Зазеркалье</i>, и наоборот. Однако если в <i>Обычной</i> стране какие-то два города соединены железной дорогой, то в <i>Зазеркалье</i> эти города не соединены, а каждые два несоединённых в <i>Обычной</i> стране города обязательно соединены железной дорогой в <i>Зазеркалье</i>. В <i>Обычной</i> стране девочка Алиса не может проехать из города <i>A</i> в город <i>B</i>, сделав менее двух пересадок. Доказать, что Алиса в <i>Зазеркалье</i> сможет проехать из любого города в любой другой, сделав не более двух пересадок.
В последовательности 19752... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой последовательности:
а) набор цифр 1234; 3269; б) вторично набор 1975; в) набор 8197?
Какое из двух чисел больше: а) <img src="/storage/problem-media/79303/problem_79303_img_2.gif"> (<i>n</i> двоек) или <img src="/storage/problem-media/79303/problem_79303_img_3.gif"> (<i>n</i> − 1 тройка); б) <img src="/storage/problem-media/79303/problem_79303_img_3.gif"> (<i>n</i> троек) или <img src="/storage/problem-media/79303/problem_79303_img_4.gif"> (<i>n</i> − 1 четвёрка).
В окружность вписан выпуклый 7-угольник. Известно, что какие-то три его угла равны120<sup><tt>o</tt></sup>. Доказать, что найдутся две его стороны, имеющие одинаковую длину.