Олимпиадные задачи из источника «9 класс, 2 тур» - сложность 1-4 с решениями
9 класс, 2 тур
НазадМожно ли какой-нибудь выпуклый многоугольник разрезать на конечное число невыпуклых четырёхугольников?
В некотором государстве города соединены дорогами. Длина каждой дороги меньше 500 км, и из каждого города в любой другой можно попасть, проехав по дорогам меньше 500 км. Когда одна дорога оказалась закрытой на ремонт, выяснилось, что из каждого города можно проехать по оставшимся дорогам в любой другой. Доказать, что при этом можно проехать меньше 1500 км.
Какое из двух чисел больше: а) <img src="/storage/problem-media/79303/problem_79303_img_2.gif"> (<i>n</i> двоек) или <img src="/storage/problem-media/79303/problem_79303_img_3.gif"> (<i>n</i> − 1 тройка); б) <img src="/storage/problem-media/79303/problem_79303_img_3.gif"> (<i>n</i> троек) или <img src="/storage/problem-media/79303/problem_79303_img_4.gif"> (<i>n</i> − 1 четвёрка).
В окружность вписан выпуклый 7-угольник. Известно, что какие-то три его угла равны120<sup><tt>o</tt></sup>. Доказать, что найдутся две его стороны, имеющие одинаковую длину.