Олимпиадные задачи из источника «10 класс» для 5-9 класса - сложность 2-3 с решениями

Функция<i>f</i>(<i>x</i>) при каждом значении  <i>x</i>∈ (− ∞, + ∞)  удовлетворяет равенству  <i>f</i>(<i>x</i>) + (<i>x</i>+ ½)<i>f</i>(1 −<i>x</i>) = 1.   а) Найдите<i>f</i>(0) и<i>f</i>(1).   б) Найдите все такие функции<i>f</i>(<i>x</i>).

Даны две непересекающиеся окружности, к которым проведены две общие внешние касательные. Рассмотрим равнобедренный треугольник, основание которого лежит на одной касательной, противоположная вершина – на другой, а каждая из боковых сторон касается одной из данных окружностей. Докажите, что высота треугольника равна сумме радиусов окружностей.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка