Олимпиадные задачи из источника «9 класс» для 9 класса - сложность 3-4 с решениями
9 класс
НазадДан выпуклый четырёхугольник<i> ABMC </i>, в котором<i> AB=BC </i>,<i> <img src="/storage/problem-media/108679/problem_108679_img_2.gif"> BAM = </i>30<i><sup>o</sup> </i>,<i> <img src="/storage/problem-media/108679/problem_108679_img_2.gif"> ACM= </i>150<i><sup>o</sup> </i>. Докажите, что<i> AM </i>– биссектриса угла<i> BMC </i>.
Каждой паре чисел <i>x</i> и <i>y</i> поставлено в соответствие некоторое число <i>x</i><i>y</i>. Найдите 19931935, если известно, что для любых трёх чисел <i>x, y, z</i> выполнены тождества: <i>x</i><i>x</i> = 0 и <i>x</i>(<i>y</i><i>z</i>) = (<i>x</i><i>y</i>) + <i>z</i>.
У Пети всего 28 одноклассников. У каждых двух из 28 различное число друзей в этом классе. Сколько друзей у Пети?
Найдите <i>x</i><sub>1000</sub>, если <i>x</i><sub>1</sub> = 4, <i>x</i><sub>2</sub> = 6, и при любом натуральном <i>n</i> ≥ 3 <i>x<sub>n</sub></i> – наименьшее составное число, большее 2<i>x</i><sub><i>n</i>–1</sub> – <i>x</i><sub><i>n</i>–2</sub>.