Олимпиадные задачи из источника «11 класс» для 2-8 класса - сложность 3 с решениями

Точка <i>X</i>, лежащая вне непересекающихся окружностей ω<sub>1</sub> и ω<sub>2</sub>, такова, что отрезки касательных, проведённых из <i>X</i> к ω<sub>1</sub> и ω<sub>2</sub>, равны. Докажите, что точка пересечения диагоналей четырёхугольника, образованного точками касания, совпадает с точкой пересечения общих внутренних касательных к ω<sub>1</sub> и ω<sub>2</sub>.

Докажите, что существует бесконечно много таких натуральных чисел <i>n</i>, что число <i>n</i> представимо в виде суммы квадратов двух натуральных чисел, а числа  <i>n</i> – 1  и  <i>n</i> + 1  – нет.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка