Олимпиадные задачи из источника «1997 год» для 10 класса - сложность 4 с решениями
На плоскости дано конечное число полос, сумма ширин которых равна 100, и круг радиуса 1.
Докажите, что каждую из полос можно параллельно перенести так, чтобы все они вместе покрыли круг.
Можно ли разбить правильный тетраэдр с ребром 1 на правильные тетраэдры и октаэдры, длины ребер каждого из которых меньше 1/100?
На доске написаны три функции: <i>f</i><sub>1</sub>(<i>x</i>) = <i>x</i> + <sup>1</sup>/<sub><i>x</i></sub>, <i>f</i><sub>2</sub>(<i>x</i>) = <i>x</i>², <i>f</i><sub>3</sub>(<i>x</i>) = (<i>x</i> – 1)². Можно складывать, вычитать и перемножать эти функции (в том числе возводить в квадрат, в куб, ...), умножать их на произвольное число, прибавлять к ним произвольное число, а также проделывать эти операции с полученными выражениями. Получите таким образом функцию <sup>1</sup>/<sub><i>x</i></sub>.
Докажите, что если стереть с доски любую из функций <i>f</i&...
Пусть 1 + <i>x + x</i>² + ... + <i>x</i><sup><i>n</i>–1</sup> = <i>F</i>(<i>x</i>)<i>G</i>(<i>x</i>), где <i>F</i> и <i>G</i> – многочлены, коэффициенты которых – нули и единицы (<i>n</i> > 1).
Докажите, что один из многочленов <i>F</i>, <i>G</i> представим в виде (1 + <i>x + x</i>² + ... + <i>x</i><sup><i>k</i>–1</sup>)<i>T</i>(<i>x</i>), где <i>T</i>(<i>x</i>) – также многочлен с коэффициентами 0 и 1 (<i>k</i> > 1).