Олимпиадные задачи из источника «8 класс» для 9 класса - сложность 2-5 с решениями
8 класс
НазадВ прямоугольном треугольнике<i> ABC </i>точка<i> O </i>– середина гипотенузы<i> AC </i>. На отрезке<i> AB </i>взята точка<i> M </i>, а на отрезке<i> BC </i>– точка<i> N </i>, причём угол<i> MON </i>– прямой. Докажите, что<i> AM</i>2<i>+CN</i>2<i> = MN</i>2.
Найдите какие-нибудь четыре попарно различных натуральных числа <i>a, b, c, d</i>, для которых числа <i>a</i>² + 2<i>cd + b</i>² и <i>c</i>² + 2<i>ab + d</i>² являются полными квадратами.
Покажите как любой четырехугольник разрезать на три трапеции (параллелограмм тоже можно считать трапецией).
Сравнив дроби <sup>111110</sup>/<sub>111111</sub>, <sup>222221</sup>/<sub>222223</sub>, <sup>333331</sup>/<sub>333334</sub>, расположите их в порядке возрастания.