Олимпиадные задачи из источника «9 класс» для 9 класса - сложность 3 с решениями

Участники шахматного турнира сыграли друг с другом по одной партии. Для каждого участника <i>A</i> было подсчитано число набранных им очков (за победу дается 1 очко, за ничью – ½ очка, за поражение – 0 очков) и <i>коэффициент силы</i> по формуле: сумма очков тех участников, у кого <i>A</i> выиграл, минус сумма очков тех, кому он проиграл.

  а) Могут ли коэффициенты силы всех участников быть больше 0?

  б) Могут ли коэффициенты силы всех участников быть меньше 0?

Натуральное число <i>N</i> в 999...99 (<i>k</i> девяток) раз больше суммы своиx цифр. Укажите все возможные значения <i>k</i> и для каждого из них приведите пример такого числа.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка