Олимпиадные задачи из источника «2001 год» для 10 класса - сложность 1-2 с решениями

Дана геометрическая прогрессия. Известно, что её первый, десятый и тридцатый члены являются натуральными числами.

Верно ли, что её двадцатый член также является натуральным числом?

Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет?

Приведите пример многочлена <i>P</i>(<i>x</i>) степени 2001, для которого  <i>P</i>(<i>x</i>) + <i>P</i>(1 – <i>x</i>) ≡ 1.

Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет?

Внутри угла с вершиной <i>M</i> отмечена точка <i>A</i>. Из этой точки выпустили шар, который отразился от одной стороны угла в точке <i>B</i>, затем от другой стороны в точке <i>C</i> и вернулся в <i>A</i> ("угол падения" равен "углу отражения", см. рис.). Докажите, что центр <i>O</i> описанной окружности треугольника <i>BCM</i> лежит на прямой <i>AM</i>. (Шар считайте точкой.) <img src="/storage/problem-media/105104/problem_105104_img_2.png" width="200">

В некоторой стране суммарная зарплата 10% самых высокооплачиваемых работников составляет 90% зарплаты всех работников. Может ли так быть, что в каждом из регионов, на которые делится эта страна, зарплата любых 10% работников составляет не более 11% всей зарплаты, выплачиваемой в этом регионе?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка