Олимпиадные задачи из источника «11 класс»
11 класс
НазадПусть <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub>, <i>CC</i><sub>1</sub> – высоты остроугольного треугольника <i>ABC, O<sub>A</sub>, O<sub>B</sub>, O<sub>C</sub></i> – центры вписанных окружностей треугольников <i>AB</i><sub>1</sub><i>C</i><sub>1</sub>, <i>BC</i><sub>1</sub><i>A</i><sub>1</sub>, <i>CA</i><sub>1</sub><i>B</i><sub>1</sub> соответственно; <i>T<sub>A</sub>, T<sub>B</sub>, T<sub>C</sub></i> – точки касания вписанной окружности треугольника <i>ABC</i> со сторо...
В возрастающей бесконечной последовательности натуральных чисел каждое число, начиная с 2002-го, является делителем суммы всех предыдущих чисел. Докажите, что в этой последовательности найдётся некоторое число, начиная с которого каждое число равно сумме всех предыдущих.
Докажите, что на графике функции <i>y = x</i>³ можно отметить такую точку <i>A</i>, а на графике функции <i>y = x</i>³ + |<i>x</i>| + 1 – такую точку <i>B</i>, что расстояние <i>AB</i> не превышает <sup>1</sup>/<sub>100</sub>.
В городе Удоеве выборы мэра проходят следующим образом. Если в очередном туре голосования никто из кандидатов не набрал больше половины голосов, то проводится следующий тур с участием всех кандидатов, кроме последнего по числу голосов. (Никогда два кандидата не набирают голосов поровну; если кандидат набрал больше половины голосов, то он становится мэром и выборы заканчиваются.) Каждый избиратель в каждом туре голосует за одного из кандидатов. Если это кандидат вышел в следующий тур, то избиратель снова голосует за него. Если же кандидат выбыл, то все его избиратели голосуют за одного и того же кандидата из числа оставшихся. На очередных выборах баллотировалось 2002 кандидата. Мэром стал Остап Бендер, занявший в первом туре <i>k</i>-е место по числу голосов. Определ...
Каждый зритель, купивший билет в первый ряд кинотеатра, занял одно из мест в первом ряду. Оказалось, что все места в первом ряду заняты, но каждый зритель сидит не на своём месте. Билетёр может менять местами соседей, если оба сидят не на своих местах. Всегда ли он может рассадить всех на свои места?
Тангенсы углов треугольника – целые числа. Чему они могут быть равны?