Олимпиадные задачи из источника «11 класс» для 2-9 класса - сложность 3 с решениями

Треугольник <i>ABC</i> с острым углом  ∠<i>A</i> = α  вписан в окружность. Её диаметр, проходящий через основание высоты треугольника, проведённой из вершины <i>B</i>, делит треугольник <i>ABC</i> на две части одинаковой площади. Найдите угол <i>B</i>.

Докажите, что для любого натурального числа <i>d</i> существует делящееся на него натуральное число <i>n</i>, в десятичной записи которого можно вычеркнуть некоторую ненулевую цифру так, что получившееся число тоже будет делиться на <i>d</i>.

Докажите, что любой квадратный трёхчлен можно представить в виде суммы двух квадратных трёхчленов с нулевыми дискриминантами.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка