Олимпиадные задачи из источника «10 класс» для 3-9 класса - сложность 3 с решениями
10 класс
НазадКапитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет ещё одну карту, и так сколько угодно раз, пока сам не скажет "стоп". Может ли Фукс добиться того, чтобы после "стопа" каждая карта наверняка оказалась не там, где была вначале?
С ненулевым числом разрешается проделывать следующие операции:<i> x<img src="/storage/problem-media/109493/problem_109493_img_2.gif"> <img src="/storage/problem-media/109493/problem_109493_img_3.gif"> </i>,<i> x<img src="/storage/problem-media/109493/problem_109493_img_2.gif"> <img src="/storage/problem-media/109493/problem_109493_img_4.gif"> </i>. Верно ли, что из каждого ненулевого рационального числа можно получить каждое рациональное число с помощью конечного числа таких операций?
Треугольник<i> ABC </i>вписан в окружность с центром в<i> O </i>.<i> X </i>"– произвольная точка внутри треугольника<i> ABC </i>, такая, что<i> <img src="/storage/problem-media/109492/problem_109492_img_2.gif"> XAB=<img src="/storage/problem-media/109492/problem_109492_img_2.gif"> XBC=ϕ </i>, а<i> P </i>– такая точка, что<i> PX<img src="/storage/problem-media/109492/problem_109492_img_3.gif"> OX </i>,<i> <img src="/storage/problem-media/109492/problem_109492_img_2.gif"> XOP=ϕ </i>, причем углы<i> <img src="/storage/problem-media/109492/problem_109492_img_2.gif"> XOP </i>и<i> <img src="/...
Можно ли покрасить 15 отрезков, изображённых на рисунке, в три цвета так, чтобы никакие два отрезка одного цвета не имели общего конца? <div align="center"><img src="/storage/problem-media/109490/problem_109490_img_2.gif"> </div>