Олимпиадные задачи из источника «2009 год» для 11 класса - сложность 4-5 с решениями

Докажите, что при любом разбиении ста "двузначных" чисел 00, 01, ..., 99 на две группы некоторые числа хотя бы одной группы можно записать в ряд так, чтобы каждые два соседних числа этого ряда отличались друг от друга на 1, 10 или 11, и хотя бы в одном из двух разрядов (единиц или десятков) встречались все 10 различных цифр.

Для каждого простого <i>p</i> найдите наибольшую натуральную степень числа <i>p</i>!, на которую делится число (<i>p</i>²)!.

На плоскости даны оси координат с одинаковым, но не обозначенным масштабом и график функции <center><i>

y= sin x, x<img align="absmiddle" src="/storage/problem-media/111925/problem_111925_img_2.gif"></i>(0<i>;α</i>)<i>.

</i></center> Как с помощью циркуля и линейки построить касательную к этому графику в заданной его точке, если: а)<i> α<img align="absmiddle" src="/storage/problem-media/111925/problem_111925_img_2.gif"></i>(<i><img align="absmiddle" src="/storage/problem-media/111925/problem_111925_img_3.gif">;π</i>); б)<i> α<img align="absmiddle" src="/storage/problem-media/111925/problem_111925_img_2.gif">&...

Дано целое число  <i>n</i> > 1.  Двое игроков по очереди отмечают точки на окружности: первый – красным цветом, второй – синим (отмечать одну и ту же точку дважды нельзя). Когда отмечено по <i>n</i> точек каждого цвета, игра заканчивается. После этого каждый игрок находит на окружности дугу наибольшей длины с концами своего цвета, на которой больше нет отмеченных точек. Игрок, у которого найденная длина больше, выиграл (в случае равенства длин дуг, а также при отсутствии таких дуг у обоих игроков – ничья). Кто из играющих может всегда выигрывать, как бы ни играл противник?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка