Олимпиадные задачи из источника «2016 год» для 8 класса - сложность 3 с решениями

Внутри выпуклого четырехугольника <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>B</i><sub>1</sub> нашлась такая точка <i>C</i>, что треугольники <i>CA</i><sub>1</sub><i>A</i><sub>2</sub> и <i>CB</i><sub>2</sub><i>B</i><sub>1</sub> – правильные. Точки <i>C</i><sub>1</sub> и <i>C</i><sub>2</sub> симметричны точке <i>C</i> относительно прямых <i>A</i><sub>2</sub><i>B</i><sub>2</sub> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub&g...

В стране лингвистов существует <i>n</i> языков. Там живет <i>m</i> людей, каждый из которых знает ровно три языка, причём для разных людей эти наборы различны. Известно, что максимальное число людей, любые два из которых могут поговорить без посредников, равно <i>k</i>. Оказалось, что  11<i>n</i> ≤ <i>k ≤ <sup>m</sup></i>/<sub>2</sub>.

Докажите, что тогда в стране найдутся хотя бы <i>mn</i> пар людей, которые не смогут поговорить без посредников.

Существует ли 2016-значное число, перестановкой цифр которого можно получить 2016 разных 2016-значных полных квадратов?

Точка <i>O</i> – центр описанной окружности остроугольного треугольника <i>ABC</i>. Прямая, перпендикулярная стороне <i>AC</i>, пересекает сторону <i>BC</i> и прямую <i>AB</i> в точках <i>Q</i> и <i>P</i> соответственно. Докажите, что точки <i>B, O</i> и середины отрезков <i>AP</i> и <i>CQ</i> лежат на одной окружности.

Васе задали на дом уравнение  <i>x</i>² + <i>p</i><sub>1</sub><i>x + q</i><sub>1</sub> = 0,  где <i>p</i><sub>1</sub> и <i>q</i><sub>1 </sub> – целые числа. Он нашел его корни <i>p</i><sub>2</sub> и <i>q</i><sub>2</sub> и написал новое уравнение  <i>x</i>² + <i>p</i><sub>2</sub><i>x + q</i><sub>2</sub> = 0.  Повторив операцию еще трижды, Вася заметил, что он решал четыре квадратных уравнения и каждое имело два различных целых корня (если из двух возможных уравнений два различных корня имело ровно одно, то Вася всегда выбирал его, а если оба – любое). Однако, как ни старался Вас...

Чётное число орехов разложено на три кучки. За одну операцию можно переложить половину орехов из кучки с чётным числом орехов в любую другую кучку. Докажите, что, как бы орехи ни были разложены изначально, такими операциями можно в какой-нибудь кучке собрать ровно половину всех орехов.

Дан выпуклый пятиугольник <i>ABCDE</i>, все стороны которого равны между собой. Известно, что угол <i>A</i> равен 120°, угол <i>C</i> равен 135°, а угол <i>D</i> равен <i>n</i>°.

Найдите все возможные целые значения <i>n</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка