Олимпиадные задачи из источника «11 класс. Первый день» - сложность 4 с решениями

Назовём тройку чисел<i>триплетом</i>, если одно из них равно среднему арифметическому двух других. Дана бесконечная последовательность $(a_n)$, состоящая из натуральных чисел. Известно, что $a_1=a_2=1$ и при $n > 2$ число $a_n$ — минимальное натуральное число такое, что среди чисел $a_1,a_2,\ldots,a_n$ нет трёх, образующих триплет. Докажите, что $a_n\leqslant \frac{n^2+7}{8}$ для любого $n$.

Середины всех высот некоторого тетраэдра лежат на его вписанной сфере. Верно ли, что тетраэдр правильный?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка