Олимпиадные задачи из источника «2023 год» для 11 класса - сложность 2 с решениями
К графикам функций $y=\cos x$ и $y=a \tan x$ провели касательные в некоторой точке их пересечения. Докажите, что эти касательные перпендикулярны друг другу для любого $a\neq0$.
Про четыре целых числа $a,b,c,d$ известно, что $$ a+b+c+d=ab+bc+cd+da+1. $$ Докажите, что модули каких-то двух из этих чисел отличаются на один.