Олимпиадные задачи из источника «2023 год» для 2-8 класса - сложность 3 с решениями
Дано натуральное число $n > 1$. Назовём положительную обыкновенную дробь (не обязательно несократимую)<i>хорошей</i>, если сумма её числителя и знаменателя равна $n$. Докажите, что любую положительную обыкновенную дробь, знаменатель которой меньше $n$, можно выразить через хорошие дроби (не обязательно различные) с помощью операций сложения и вычитания тогда и только тогда, когда $n$ — простое число. Напомним, что обыкновенная дробь — это отношение целого числа к натуральному.
Даны две последовательности из букв А и Б, в каждой из которых по 100 букв. За одну операцию разрешается вставить в какое-то место последовательности (возможно, в начало или в конец) одну или несколько одинаковых букв или убрать из последовательности одну или несколько подряд идущих одинаковых букв. Докажите, что из первой последовательности можно получить вторую не более чем за 100 операций.
Назовём натуральное число<i>хорошим</i>, если в его десятичной записи есть только нули и единицы. Пусть произведение двух хороших чисел оказалось хорошим числом. Правда ли, что тогда сумма цифр произведения равна произведению сумм цифр сомножителей? (В 44-м Турнире городов задача предлагалась в эквивалентной формулировке: <i>хорошие</i> числа были названы <i>заурядными</i>)
Докажите, что в прямоугольном треугольнике с углом $30$ градусов одна биссектриса в два раза короче другой.