Олимпиадные задачи из источника «2023 год» для 7 класса - сложность 2 с решениями
На столе в ряд стоят $23$ шкатулки, в одной из которых находится приз. На каждой шкатулке написано либо «Здесь приза нет», либо «Приз в соседней шкатулке». Известно, что ровно одно из этих утверждений правдиво. Что написано на средней шкатулке?
Даны три различных ненулевых числа. Петя и Вася составляют квадратные уравнения, подставляя эти числа в качестве коэффициентов, но каждый раз в новом порядке. Если у уравнения есть хотя бы один корень, то Петя получает фантик, а если ни одного, то фантик достаётся Васе. Первые три фантика достались Пете, а следующие два — Васе. Можно ли определить, кому достанется последний, шестой фантик?