Олимпиадные задачи из источника «2023 год» для 9 класса - сложность 4 с решениями

На плоскости даны две окружности $\omega_{1}$ и $\omega_{2}$, касающиеся внешним образом. На окружности $\omega_{1}$ выбран диаметр $AB$, а на окружности $\omega_{2}$ выбран диаметр $CD$. Рассмотрим всевозможные положения точек $A$, $B$, $C$ и $D$, при которых $ABCD$ — выпуклый описанный четырёхугольник, и пусть $I$ — центр его вписанной окружности. Найдите геометрическое место точек $I$.

На экране суперкомпьютера напечатано число $11\ldots 1$ ($900$ единиц). Каждую секунду суперкомпьютер заменяет его по следующему правилу. Число записывается в виде $\overline{AB}$, где $B$ состоит из двух его последних цифр, и заменяется на $2\cdot A + 8\cdot B$ (если $B$ начинается на нуль, то он при вычислении опускается). Например, $305$ заменяется на $2\cdot 3 + 8 \cdot 5 = 46$. Если на экране остаётся число, меньшее $100$, то процесс останавливается. Правда ли, что он остановится?

Назовём тройку чисел<i>триплетом</i>, если одно из них равно среднему арифметическому двух других. Последовательность $(a_n)$ строится следующим образом: $a_0 = 0$, $a_1 = 1$ и при $n > 1$ число $a_n$ — такое минимальное натуральное число, большее $a_{n-1}$, что среди чисел $a_0$, $a_1$, ..., $a_n$ нет трёх, образующих триплет. Докажите, что $a_{2023} \leqslant 100,000$.

Правильный 100-угольник разрезали на несколько параллелограммов и два треугольника. Докажите, что эти треугольники равны.

Периметр треугольника $ABC$ равен 1. Окружность $\omega$ касается стороны $BC$, продолжения стороны $AB$ в точке $P$ и продолжения стороны $AC$ в точке $Q$. Прямая, проходящая через середины $AB$ и $AC$, пересекает описанную окружность треугольника $APQ$ в точках $X$ и $Y$. Найдите длину отрезка $XY$.

На каждую клетку доски $8 \times 8$ поставили по сторожу. Каждый сторож может смотреть в одном из четырёх направлений (вдоль линий доски) и сторожить всех сторожей на линии своего взгляда. Для какого наибольшего $k$ можно так направить взгляды сторожей, чтобы каждого сторожа сторожили не менее $k$ других сторожей?

На сторонах равностороннего треугольника $ABC$ построены во внешнюю сторону треугольники $AB'C$, $CA'B$, $BC'A$ так, что получился шестиугольник $AB'CA'BC'$, в котором каждый из углов $A'BC'$, $C'AB'$, $B'CA'$ больше $120^\circ$, а для сторон выполняются равенства $AB'=AC'$, $BC'=BA'$, $CA'=CB'$. Докажите, что из отрезков $AB'$, $BC'$, $CA'$ можно составить треугольник.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка