Олимпиадные задачи из источника «11 класс. Второй день» - сложность 3-5 с решениями
11 класс. Второй день
НазадПетя и Вася независимо друг от друга разбивают белую клетчатую доску $100\times 100$ на произвольные группы клеток, каждая из чётного (но не обязательно все из одинакового) числа клеток, каждый – на свой набор групп. Верно ли, что после этого всегда можно покрасить по половине клеток в каждой группе из разбиения Пети в чёрный цвет так, чтобы в каждой группе из разбиения Васи было поровну чёрных и белых клеток?
В остроугольном треугольнике $ABC$ высоты $AH_A$, $BH_B$ и $CH_C$ пересекаются в точке $H$. Через точки, в которых окружность радиуса $HH_A$ с центром $H$ пересекает отрезки $BH$ и $CH$, проведена прямая $\ell_A$. Аналогично проведены прямые $\ell_B$ и $\ell_C$. Докажите, что точка пересечения высот треугольника, образованного прямыми $\ell_A$, $\ell_B$, $\ell_C$, совпадает с центром окружности, вписанной в треугольник $ABC$.