Олимпиадные задачи из источника «2025 год» - сложность 4 с решениями
Петя красит каждую клетку доски $22 \times 22$ в чёрный или белый цвет так, чтобы клетки каждого цвета образовывали многоугольник. Затем Вася разрезает доску на двухклеточные доминошки. Петя стремится к тому, чтобы в итоге получилось как можно больше разноцветных доминошек, а Вася – к тому, чтобы их получилось как можно меньше. Наличие какого наибольшего числа разноцветных доминошек может гарантировать Петя, как бы ни действовал Вася? (Напомним, что граница многоугольника – замкнутая ломаная без самопересечений.)
Около таверны стоят $100$ эльфов, $100$ гномов и $100$ орков. Сначала в неё заходят $10$ эльфов, $10$ гномов и $10$ орков. Затем каждую минуту из неё выходит одно существо и тут же заходит другое, причём всегда после выхода эльфа заходит гном, после выхода гнома – орк, а после выхода орка – эльф. Могло ли оказаться так, что в какой-то момент в таверне побывали все возможные компании из $30$ существ ровно по одному разу? Все $300$ существ различны.