Олимпиадные задачи из источника «7 класс» - сложность 2 с решениями

Какое наибольшее количество прямоугольников 41 можно разместить в квадрате 66 (не нарушая границ клеток)?

Отрезки <i>АС</i> и <i>BD</i> пересекаются в точке <i>О</i>. Периметр треугольника <i>АВС</i> равен периметру треугольника <i>АВD</i>, а периметр треугольника <i>ACD</i> равен периметру треугольника <i>BCD</i>. Найдите длину <i>АО</i>, если <i>ВО</i> = 10 см.

Расположите в порядке возрастания числа: 222<sup>2</sup>; 22<sup>22</sup>; 2<sup>222</sup>; 22<sup>2<sup>2</sup></sup>; 2<sup>22<sup>2</sup></sup>; 2<sup>2<sup>22</sup></sup>; 2<sup>2<sup>2<sup>2</sup></sup></sup>. Ответ обоснуйте.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка