Олимпиадные задачи из источника «10 класс»
10 класс
НазадНатуральные числа от 1 до 200 разбили на 50 множеств.
Докажите, что в одном из них найдутся три числа, являющиеся длинами сторон некоторого треугольника.
<i>a, b, c</i> – такие три числа, что <i>a + b + c</i> = 0. Доказать, что в этом случае справедливо соотношение <i>ab + ac + bc</i> ≤ 0.
Прямоугольный параллелепипед размером <i>m</i>×<i>n</i>×<i>k</i> разбит на единичные кубики. Сколько всего образовалось параллелепипедов (включая исходный)?
Существует ли непрямоугольный треугольник, вписанный в окружность радиуса 1, у которого сумма квадратов длин двух сторон равна 4?
Найдите все натуральные <i>n</i> > 2, для которых многочлен <i>x<sup>n</sup> + x</i>² + 1 делится на многочлен <i>x</i>² + <i>x</i> + 1.
Решите в целых числах уравнение (<i>x</i>² – <i>y</i>²)² = 16<i>y</i> + 1.
Дан неравнобедренный остроугольный треугольник <i>АВС</i>. Вне его построены равнобедренные тупоугольные треугольники <i>АВ</i><sub>1</sub><i>С</i> и <i>ВА</i><sub>1</sub><i>С</i> с одинаковыми углами α при их основаниях <i>АС</i> и <i>ВС</i>. Перпендикуляр, проведённый из вершины <i>С</i> к отрезку <i>А</i><sub>1</sub><i>В</i><sub>1</sub> пересекает серединный перпендикуляр к стороне <i>АВ</i> в точке <i>С</i><sub>1</sub>. Найдите угол <i>АС</i><sub>1</sub><i>В</i>.
Найдите все строго возрастающие последовательности натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub>,</i> ..., в которых <i>a</i><sub>2</sub> = 2 и <i>a<sub>nm</sub> = a<sub>n</sub>a<sub>m</sub></i> для любых натуральных <i>n</i> и <i>m</i>.
В турнире участвовало 11 шахматистов: 4 – из России и 7 зарубежных. Каждый шахматист сыграл с каждым по две партии (выигрыш – 1 очко, ничья – 0,5 очка, поражение – 0). По окончании турнира оказалось, что все участники набрали различное количество очков, причем сумма очков, набранных россиянами, равна сумме очков, набранных иностранцами. Могло ли в тройке призеров не оказаться ни одного россиянина?
Четырёхугольник <i>ABCD</i> вписан в окружность, <i>АС = а, BD = b, AB</i> ⊥ <i>CD</i>. Найдите радиус окружности.
По положительным числам <i>х</i> и <i>у</i> вычисляют <i>а</i> = <sup>1</sup>/<sub><i>y</i></sub> и <i>b</i> = <i>y</i> + <sup>1</sup>/<sub><i>x</i></sub>. После этого находят <i>С</i> – наименьшее число из трёх: <i>x, a</i> и <i>b</i>.
Какое наибольшее значение может принимать <i>C</i>?
В прямоугольном параллелепипеде <i>АВСDA'B'C'D' АВ = ВС = а, AA' = b</i>. Его ортогонально спроектировали на некоторую плоскость, содержащую ребро <i>CD</i>. Найдите наибольшее значение площади проекции.
Найдите <img align="absmiddle" src="/storage/problem-media/65173/problem_65173_img_2.gif"> если <img align="absmiddle" src="/storage/problem-media/65173/problem_65173_img_3.gif">.
Три трёхзначных простых числа, составляющие арифметическую прогрессию, записаны подряд.
Может ли полученное девятизначное число быть простым?
Дан треугольник со сторонами 3, 4 и 5. Построены три круга радиусами 1 с центрами в вершинах треугольника.
Найдите суммарную площадь частей кругов, заключённых внутри треугольника.