Олимпиадные задачи из источника «02 (2004 год)» - сложность 1-2 с решениями
02 (2004 год)
НазадСуществует ли в пространстве замкнутая самопересекающаяся ломаная, которая пересекает каждое свое звено ровно один раз, причём в его середине?
Точки <i>Е</i> и <i>F</i> – середины сторон <i>ВС</i> и <i>AD</i> выпуклого четырёхугольника <i>АВСD</i>. Докажите, что отрезок <i>EF</i> делит диагонали <i>АС</i> и <i>BD</i> в одном и том же отношении.
Постройте треугольник <i>АВС</i> по углу <i>А</i> и медианам, проведенным из вершин <i>В</i> и <i>С</i>.
В выпуклом четырехугольнике <i>АВСD</i> точка <i>Е</i> — середина <i>CD</i>, <i>F</i> — середина <i>АD</i>, <i>K</i> — точка пересечения <i>АС</i> и <i>ВЕ</i>. Докажите, что площадь треугольника <i>BKF</i> в два раза меньше площади треугольника <i>АВС</i>.