Олимпиадные задачи из источника «03 (2005 год)»

Hа плоскости проведены шесть прямых. Известно, что для любых трёх из них найдется такая четвёртая из этого же набора прямых, что все четыре будут касаться некоторой окружности. Oбязательно ли все шесть прямых касаются одной и той же окружности?

Bнутри треугольника <i>ABC</i> выбрана произвольная точка <i>M</i>. Докажите, что  <i>MA + MB + MC</i> ≤ max {<i>AB + BC, BC + AC, AC + AB</i>}.

B пирамиду, основанием которой служит параллелограмм, можно вписать сферу.

Докажите, что суммы площадей её противоположных боковых граней равны.

<i>ABCDE</i> — правильный пятиугольник. Tочка <i>B</i>' симметрична точке <i>B</i> относительно прямой <i>AC</i> (см. рисунок). Mожно ли пятиугольниками, равными <i>AB</i>'<i>CDE</i>, замостить плоскость?<div align="center"><img src="/storage/problem-media/116192/problem_116192_img_2.gif"></div>

Hа окружности с диаметром <i>AB</i> выбраны точки <i>C</i> и <i>D</i>. <i>XY</i> – диаметр, проходящий через середину <i>K</i> хорды <i>CD</i>. Tочка <i>M</i> – проекция точки <i>X</i> на прямую <i>AC</i>, а точка <i>N</i> – проекция точки <i>Y</i> на прямую <i>BD</i>. Докажите, что точки <i>M, N</i> и <i>K</i> лежат на одной прямой.

Дан остроугольный треугольник <i>ABC</i>. Прямая, параллельная <i>BC</i>, пересекает стороны <i>AB</i> и <i>AC</i> в точках <i>M</i> и <i>P</i> соответственно. При каком расположении точек <i>M</i> и <i>P</i> радиус окружности, описанной около треугольника <i>BMP</i>, будет наименьшим?

Пусть <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> – середины сторон треугольника <i>ABC, I</i> – центр вписанной в него окружности, <i>C</i><sub>2</sub> – точка пересечения прямых <i>C</i><sub>1</sub><i>I</i> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub>, <i>C</i><sub>3</sub> – точка пересечения прямых <i>CC</i><sub>2</sub> и <i>AB</i>. Докажите, что прямая <i>IC</i><sub>3</sub> перпендикулярна прямой <i>AB</i>.

В окружность вписан треугольник <i>ABC</i>. Постройте такую точку <i>P</i>, что точки пересечения прямых <i>AP, BP</i> и <i>CP</i> с данной окружностью являются вершинами равностороннего треугольника.

Дан шестиугольник <i>ABCDEF</i>, в котором <i>AB</i> = <i>BC</i>, <i>CD</i> = <i>DE</i>, <i>EF</i> = <i>FA</i>, а углы <i>A</i> и <i>C</i> — прямые. Докажите, что прямые <i>FD</i> и <i>BE</i> перпендикулярны.

В треугольнике <i>ABC</i> на стороне <i>AB</i> выбраны точки <i>K</i> и <i>L</i> так, что <i>AK</i> = <i>BL</i>, а на стороне <i>BC</i> — точки <i>M</i> и <i>N</i> так, что <i>CN</i> = <i>BM</i>. Докажите, что <i>KN</i> + <i>LM</i> ≥ <i>AC</i>.

Дан параллелограмм <i>ABCD</i>. Прямая, параллельная <i>AB</i>, пересекает биссектрисы углов <i>A</i> и <i>C</i> в точках <i>P</i> и <i>Q</i> соответственно.

Докажите, что углы <i>ADP</i> и <i>ABQ</i> равны.

В шестиугольнике пять углов по 90°, а один угол — 270° (см. рисунок). C помощью линейки без делений разделите его на два равновеликих многоугольника.<div align="center"><img src="/storage/problem-media/116184/problem_116184_img_2.gif"></div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка