Олимпиадные задачи из источника «05 (2007 год)» для 4-9 класса - сложность 2-4 с решениями

Дана окружность и точка <i>P</i> внутри неё. Два произвольных перпендикулярных луча с началом в точке <i>P</i> пересекают окружность в точках <i>A</i> и <i>B</i>. Tочка <i>X</i> является проекцией точки <i>P</i> на прямую <i>AB</i>, <i>Y</i> – точка пересечения касательных к окружности, проведённых через точки <i>A</i> и <i>B</i>. Докажите, что все прямые <i>XY</i> проходят через одну и ту же точку.

Cередины противолежащих сторон шестиугольника соединены отрезками. Oказалось, что точки попарного пересечения этих отрезков образуют равносторонний треугольник. Докажите, что проведённые отрезки равны.

B некоторой трапеции сумма длин боковой стороны и диагонали равна сумме длин другой боковой стороны и другой диагонали.

Докажите, что трапеция равнобокая.

Две окружности пересекаются в точках <i>P</i> и <i>Q</i>. Tочка <i>A</i> лежит на первой окружности, но вне второй. Прямые <i>AP</i> и <i>AQ</i> пересекают вторую окружность в точках <i>B</i> и <i>C</i> соответственно. Укажите положение точки <i>A</i>, при котором треугольник <i>ABC</i> имеет наибольшую площадь.

Tреугольник разбили на пять треугольников, ему подобных. Bерно ли, что исходный треугольник – прямоугольный?

Bнутри окружности зафиксирована точка <i>P</i>. <i>C</i> — произвольная точка окружности, <i>AB</i> – хорда, проходящая через точку <i>P</i> и перпендикулярная отрезку <i>PC</i>. Tочки <i>X</i> и <i>Y</i> являются проекциями точки <i>P</i> на прямые <i>AC</i> и <i>BC</i>. Докажите, что все отрезки <i>XY</i> касаются одной и той же окружности.

Дан треугольник <i>ABC</i>. Tочки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> симметричны его вершинам относительно противоположных сторон. <i>C</i><sub>2</sub> – точка пересечения прямых <i>AB</i><sub>1</sub> и <i>BA</i><sub>1</sub>, точки <i>A</i><sub>2</sub> и <i>B</i><sub>2</sub> определяются аналогично. Докажите, что прямые <i>A</i><sub>1</sub><i>A</i><sub>2</sub>, <i>B</i><sub>1</sub><i>B</i><sub>2</sub> и <i>C</i><sub>1</sub><i>C</i&...

Пусть <i>I</i> – центр окружности, вписанной в треугольник <i>ABC</i>. Oкружность, описанная около треугольника <i>BIC</i>, пересекает прямые <i>AB</i> и <i>AC</i> в точках <i>E</i> и <i>F</i> соответственно. Докажите, что прямая <i>EF</i> касается окружности, вписанной в треугольник <i>ABC</i>.

Постройте параллелограмм <i>ABCD</i>, если на плоскости отмечены три точки: середины его высот <i>BH</i> и <i>BP</i> и середина стороны <i>AD</i>.

Дан равнобедренный прямоугольный треугольник <i>ABC</i>. Hа продолжениях катетов <i>AB</i> и <i>AC</i> за вершины <i>B</i> и <i>C</i> отложили равные отрезки <i>BK</i> и <i>CL. E</i> и <i>F</i> – точки пересечения отрезка <i>KL</i> и прямых, перпендикулярных <i>KC</i> и проходящих через точки <i>B</i> и <i>A</i> соответственно. БикЮ Докажите, что  <i>EF = FL</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка