Олимпиадные задачи из источника «10 (2012 год)» для 10 класса - сложность 2-3 с решениями

Внутри окружности с центром <i>O</i> отмечены точки <i>A</i> и <i>B</i> так, что  <i>OA = OB</i>.

Постройте на окружности точку <i>M</i>, для которой сумма расстояний до точек <i>A</i> и <i>B</i> наименьшая среди всех возможных.

Внутри выпуклого многогранника выбрана точка <i>P</i> и несколько прямых  <i>l</i><sub>1</sub>, ..., <i>l<sub>n</sub></i>,  проходящих через <i>P</i> и не лежащих в одной плоскости. Каждой грани многогранника поставим в соответствие ту из прямых  <i>l</i><sub>1</sub>, ..., <i>l<sub>n</sub></i>,  которая образует наибольший угол с плоскостью этой грани (если таких прямых несколько, выберем любую из них). Докажите, что найдётся грань, которая пересекается с соответствующей ей прямой.

<i>H</i> – точка пересечения высот <i>AA'</i> и <i>BB'</i> остроугольного треугольника <i>ABC</i>. Прямая, перпендикулярная <i>AB</i>, пересекает эти высоты в точках <i>D</i> и <i>E</i>, а сторону <i>AB</i> – в точке <i>P</i>. Докажите, что ортоцентр треугольника <i>DEH</i> лежит на отрезке <i>CP</i>.

В выпуклом пятиугольнике <i>ABCDE</i>:  ∠<i>A</i> = ∠<i>C</i> = 90°,  <i>AB = AE</i>,  <i>BC = CD</i>,  <i>AC</i> = 1.  Найдите площадь пятиугольника.

Верно ли, что центр вписанной окружности треугольника лежит внутри треугольника, образованного средними линиями данного?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка