Олимпиадные задачи из источника «8 класс» - сложность 2-5 с решениями

В треугольнике <i>ABC</i> провели биссектрисы углов <i>A</i> и <i>C</i>. Точки <i>P</i> и <i>Q</i> – основания перпендикуляров, опущенных из вершины <i>B</i> на эти биссектрисы. Докажите, что отрезок <i>PQ</i> параллелен стороне <i>AC</i>.

На клетчатой бумаге нарисован прямоугольник 5x9. В левом нижнем углу стоит фишка. Коля и Серёжа по очереди передвигают ее на любое количество клеток либо вправо, либо вверх. Первым ходит Коля. Выигрывает тот, кто поставит фишку в правый верхний. Кто выигрывает при правильной игре?

Маша задумала натуральное число и нашла его остатки при делении на 3, 6 и 9. Сумма этих остатков оказалась равна 15.

Найдите остаток от деления задуманного числа на 18.

Боковая сторона трапеции равна одному основанию и вдвое меньше другого.

Докажите, что вторая боковая сторона перпендикулярна одной из диагоналей трапеции.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка