Олимпиадные задачи из источника «11 класс» для 3-8 класса - сложность 2-4 с решениями
11 класс
НазадДаны таблица 100×100 клеток и <i>N</i> фишек. Рассматриваются все такие расстановки фишек в клетки таблицы, что никакие две фишки не стоят в соседних клетках. При каком наибольшем <i>N</i> в каждой из этих расстановок можно найти хотя бы одну фишку, от перемещения которой в соседнюю клетку заданное условие не нарушится? (Соседними считаются клетки, имеющие общую сторону.)
Функция<i> f </i>такова, что для любых положительных<i> x </i>и<i> y </i>выполняется равенство<i> f</i>(<i>xy</i>)<i> = f</i>(<i>x</i>)<i> + f</i>(<i>y</i>). Найдите<i> f</i>(2007), если<i> f</i>(<i><img src="/storage/problem-media/109438/problem_109438_img_2.gif"></i>)<i> = </i>1.
Найдите все нечётные натуральные числа, большие 500, но меньшие 1000, у каждого из которых сумма последних цифр всех делителей (включая 1 и само число) равна 33.