Олимпиадные задачи из источника «10 Класс» для 8 класса - сложность 2-5 с решениями
10 Класс
НазадВ течение92дней авиакомпания ежедневно выполняла по десять рейсов. За день каждый самолет выполнял не более одного рейса. Известно, что для любой пары дней найдется один и только один самолет, летавший в оба эти дня. Докажите, что есть самолет, летавший каждый день.
Существуют ли нечётные целые числа <i>х, у</i> и <i>z</i>, удовлетворяющие равенству (<i>x + y</i>)² + (<i>x + z</i>)² = (<i>y + z</i>)²?
Пусть<i> α </i>,<i> β </i>,<i> γ </i>и<i> δ </i> — градусные меры углов некоторого выпуклого четырехугольника. Всегда ли из этих четырех чисел можно выбрать три числа так, чтобы они выражали длины сторон некоторого треугольника (например, в метрах)?
Из ряда натуральных чисел вычеркнули все числа, которые являются квадратами или кубами целых чисел. Какое из оставшихся чисел стоит на сотом месте?