Олимпиадные задачи из источника «9 класс» для 9 класса - сложность 2-5 с решениями

В ожидании покупателей продавец арбузов поочерёдно взвесил 20 арбузов (массой 1 кг, 2 кг, 3 кг, ..., 20 кг), уравновешивая арбуз на одной чашке весов одной или двумя гирями на другой чашке (возможно, одинаковыми). При этом продавец записывал на бумажке, гири какой массы он использовал. Какое наименьшее количество различных чисел могло оказаться в его записях, если масса каждой гири – целое число килограммов?

Квадрат <i>ABCD</i> и равнобедренный прямоугольный треугольник <i>AEF</i>  (∠<i>AEF</i> = 90°)  расположены так, что точка <i>E</i> лежит на отрезке <i>BC</i> (см. рисунок). Найдите угол <i>DCF</i>.<div align="center"><img src="/storage/problem-media/65514/problem_65514_img_2.png"></div>

Из Златоуста в Миасс выехали одновременно "ГАЗ", "МАЗ" и "КамАЗ". "КамАЗ", доехав до Миасса, сразу повернул назад и встретил "МАЗ" в 18 км, а "ГАЗ" – в 25 км от Миасса. "МАЗ", доехав до Миасса, также сразу повернул назад и встретил "ГАЗ" в 8 км от Миасса. Каково расстояние от Златоуста до Миасса?

В треугольник <i>ABC</i> вписана окружность с центром <i>O</i>. На стороне <i>AB</i> выбрана точка <i>P</i>, а на продолжении стороны <i>AC</i> за точку <i>C</i> – точка <i>Q</i> так, что отрезок <i>PQ</i> касается окружности. Докажите, что  ∠<i>BOP</i> = ∠<i>COQ</i>.

Могут ли произведения всех ненулевых цифр двух последовательных натуральных чисел отличаться ровно в 54 раза?

Известно, что  <i>a</i>² + <i>b = b</i>² + <i>c = c</i>² + <i>a</i>.  Какие значения может принимать выражение  <i>a</i>(<i>a</i>² – <i>b</i>²) + <i>b</i>(<i>b</i>² – <i>c</i>²) + <i>c</i>(<i>c</i>² – <i>a</i>²)?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка