Олимпиадные задачи из источника «Олимпиада по геометрии имени И.Ф. Шарыгина» для 9 класса - сложность 5 с решениями
Олимпиада по геометрии имени И.Ф. Шарыгина
НазадДан выпуклый четырехугольник<i> ABCD </i>.<i> A' </i>,<i> B' </i>,<i> C' </i>,<i> D' </i>– ортоцентры треугольников<i> BCD </i>,<i> CDA </i>,<i> DAB </i>,<i> ABC </i>. Докажите, что в четырехугольниках<i> ABCD </i>и<i> A'B'C'D' </i>соответствующие диагонали делятся точками пересечения в одном и том же отношении.
На доске был нарисован четырехугольник, в который можно вписать и около которого можно описать окружность. В нем отметили центры этих окружностей и точку пересечения прямых, соединяющих середины противоположных сторон, после чего сам четырехугольник стерли. Восстановите его с помощью циркуля и линейки.
Четырехугольник<i> ABCD </i>вписан в окружность с центром<i> O </i>. Точки<i> C' </i>,<i> D' </i>симметричны ортоцентрам треугольников<i> ABD </i>и<i> ABC </i>относительно<i> O </i>. Докажите, что если прямые<i> BD </i>и<i> BD' </i>симметричны относительно биссектрисы угла<i> B </i>, то прямые<i> AC </i>и<i> AC' </i>симметричны относительно биссектрисы угла<i> A </i>.
В треугольнике $ABC$ вписанная окружность $\omega$ с центром $I$ касается $BC$ в точке $D$. Точка $P$ – проекция ортоцентра треугольника $ABC$ на медиану из вершины $A$. Докажите, что окружности $AIP$ и $\omega$ высекают на $AD$ равные отрезки
В треугольнике $ABC$ с тупым углом $B$ отмечены такие точки $P$ и $Q$ на $AC$, что $AP=PB$, $BQ=QC$. Окружность $BPQ$ пересекает стороны $AB$ и $BC$ в точках $N$ и $M$ соответственно. а) (<i>П.Рябов</i>) Докажите, что точка $R$ пересечения $PM$ и $NQ$ равноудалена от $A$ и $C$.
б) (<i>А.Заславский</i>) Пусть $BR$ пересекает $AC$ в точке $S$. Докажите, что $MN\perp OS$, где $O$ – центр описанной окружности треугольника $ABC$.