Олимпиадные задачи из источника «12 турнир (1990/1991 год)» для 11 класса - сложность 1-2 с решениями

Ищутся такие оканчивающиеся на 5 натуральные числа, что их цифры монотонно не убывают (то есть каждая цифра, начиная со второй, не меньше предыдущей цифры), и в десятичной записи их квадрата цифры тоже монотонно не убывают. Докажите, что таких чисел бесконечно много.

Тремя бесконечными сериями равноотстоящих параллельных прямых плоскость разбита на равносторонние треугольники со стороной 1.

<i>M</i> – множество всех их вершин. <i>A</i> и <i>B</i> – две вершины одного треугольника. Разрешается поворачивать плоскость на 120° вокруг любой из вершин множества <i>M</i>. Можно ли за несколько таких преобразований перевести точку <i>A</i> в точку <i>B</i>?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка