Олимпиадные задачи из источника «13 турнир (1991/1992 год)» для 7 класса - сложность 3 с решениями

Имеется 100 серебряных монет, упорядоченных по весу, и 101 золотая монета, они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за наименьшее число взвешиваний найти монету, занимающую среди всех монет 101-е место?

Круг разбит на <i>n</i> секторов, в некоторых секторах стоят фишки – всего фишек  <i>n</i> + 1.  Затем позиция подвергается преобразованиям. Один шаг преобразования состоит в следующем: берутся какие-нибудь две фишки, стоящие в одном секторе, и переставляются в разные стороны в соседние секторы. Докажите, что через некоторое число шагов не менее половины секторов будет занято.

Квадрат 9×9 разбит на 81 единичную клетку. Некоторые клетки закрашены, причём расстояние между центрами каждых двух закрашенных клеток больше 2.

  а) Приведите пример раскраски, при которой закрашенных клеток 17.

  б) Докажите, что больше 17 закрашенных клеток быть не может.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка