Олимпиадные задачи из источника «14 турнир (1992/1993 год)» для 11 класса - сложность 2 с решениями
14 турнир (1992/1993 год)
НазадКуб с ребром <i>n</i> составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких <i>n</i> это возможно?
Существует ли кусочно-линейная функция <i>f</i>, определённая на отрезке [–1, 1] (включая концы), для которой <i>f</i>(<i>f</i>(<i>x</i>))= – <i>x</i> при всех <i>x</i>?
(Функция называется кусочно-линейной, если её график есть объединение конечного числа точек и интервалов прямой; она может быть разрывной.)