Олимпиадные задачи из источника «весенний тур, тренировочный вариант, 10-11 класс» для 9 класса - сложность 1-3 с решениями
весенний тур, тренировочный вариант, 10-11 класс
НазадНа гипотенузе <i>AB</i> прямоугольного треугольника <i>ABC</i> во внешнюю сторону построен квадрат <i>ABDE</i>. Известно, что <i>AC</i> = 1, <i>BC</i> = 3.
В каком отношении делит сторону <i>DE</i> биссектриса угла <i>C</i>?
Игра происходит на квадрате клетчатой бумаги 9×9. Играют двое, ходят по очереди. Начинающий игру ставит в свободные клетки крестики, его партнер – нолики. Когда все клетки заполнены, подсчитывается количество К строк и столбцов, в которых крестиков больше, чем ноликов,и количество Н строк и столбцов, в которых ноликов больше, чем крестиков. Разность В = К – Н считается выигрышем игрока, который начинает. Найдите такое значение B, что
1) первый игрок может обеспечить себе выигрыш не меньше B, как бы ни играл второй игрок;
2) второй игрок всегда может добиться того, что первый получит выигрыш не больше B, как бы тот ни играл.
В ряд стоят 1999 чисел. Первое число равно 1. Известно, что каждое число, кроме первого и последнего, равно сумме двух соседних.
Найдите последнее число.
На доске написано несколько целых положительных чисел: <i>a</i><sub>0</sub>, <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ... , <i>a<sub>n</sub></i>. Пишем на другой доске следующие числа: <i>b</i><sub>0</sub> – сколько всего чисел на первой доске, <i>b</i><sub>1</sub> – сколько там чисел, больших единицы, <i>b</i><sub>2</sub> – сколько чисел, больших двойки, и т.д., пока получаются положительные числа. На этом заканчиваем – нули не пишем. На третьей доске пишем числа <i>c</i><sub>0</sub>, <i>c</i><sub>1</sub>, <i>c</i><sub>2</sub>, ... , построенные по ч...