Олимпиадные задачи из источника «осенний тур, сложный вариант, 8-9 класс» - сложность 4 с решениями

В бесконечной последовательности  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... число <i>a</i><sub>1</sub> равно 1, а каждое следующее число <i>a<sub>n</sub></i> строится из предыдущего <i>a</i><sub><i>n</i>–1</sub> по правилу: если у числа <i>n</i> наибольший нечётный делитель имеет остаток 1 от деления на 4, то  <i>a<sub>n</sub> = a</i><sub><i>n</i>–1</sub> + 1,  если же остаток равен 3, то  <i>a<sub>n</sub> = a</i><sub><i>n</i>–1</sub> – 1.  Докажите, что в этой последовательности

  а) число 1 встреч...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка